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INVESTIGATION OF AN ALTERNATIVE FINITE ELEMENT PROCEDURE: 
A ONE-STEP, STEADY-STATE ANALYSIS 

Leonard R. Herrmann and Joe Mello 
Department of Civil and Environmental Engineering 

University of California 
Davis, CA. 95616 

Introduction 

The purpose of this study was to investigate the feasibility of developing a 
one-step, steady-state finite element analysis procedure that is applicable to 
the "plow problem". The plow problem being defined as the determination 
of the state of stress and deformation induced in a soil deposit by the passage 
of a plow type device through the soil at a constant velocity and the 
calculation of the force required to drive the plow. The analysis of this 
problem can be carried out as a transient analysis using available commercial 
finite element codes. Such an analysis would, in a step wise fashion, analyze 
the configuration as the plow entered the soil and proceeded to reach a steady- 
state plowing action. The advantage of such an analysis is that it can be 
performed using available software. In addition, if the plow insertion is 
described in a realistic fashion, the stresses and deformations developed 
during the insertion process would also be determined. The only possible 
drawback to such an analysis is possible large computational costs associated 
with a transient, nonlinear, inelastic, three-dimensional finite element 
analysis of a relatively complicated configuration. 

Assuming that the steady-state plowing process does not result in any 
periodic localization (e.g., cracks propagating into the soil mass at regular 
intervals from the plow path), an alternative would be to perform a one-step, 
steady-state analysis. An observer situated on a plow passing through a 
homogeneous soil mass at a constant velocity would observe steady-state 
conditions. The goal of a steady-state analysis is to capture this steady-state 
behavior in a one step analysis. The advantage of such an analysis is that 
multiple solution steps are not required and, thus, there is a potential for 
considerable computational cost saving. The disadvantage is that when the 
problem is nonlinear due either to material or geometric nonlinearities, 
commercial software does not exist to perform the analysis. Approximate 
analyses [1,2] for specialized geometric configurations have been reported for a 
related class of Geotechnical Engineering problems (insertion of a sampling 
tube into a soil mass), however, in order to determine the deformation 
pattern the method treats the soil as a liquid; the degree of approximation 



introduced by this assumption is hard to access. In, addition, no general 
procedures are available to extended this type of analysis to the plow problem. 

Weighting the advantages and disadvantages of the two competing analysis 
procedures it seemed clear that the available and proven multi-step, transient 
analysis procedure is the preferable way to proceed for a project requiring a 
solution within a given time frame. However, as a possible backup in case 
the transient analysis should prove to be excessively expensive, it seemed 
advisable to perform a preliminary investigation of the feasibility of the 
steady-state procedure. Such a preliminary investigation was the goal of this 
portion of the project. 

Scope of Study 

In order to model the plowing process as steady state the following 
assumptions (these may be viewed as restrictions or approximations) are 
required: 

1) It is assumed that the soil deposit is infinite in extent, level and 
homogeneous in the direction of the plowing action. 

2) It is assumed that the plow moves at a constant depth, with constant 
velocity v0 and in a straight path. 

3) It is assumed that no significant "periodic localizations" occur in the 
soil mass during the plowing process. (If significant "periodic 
localizations", should occur, then an observer on the plow would not 
observe steady-state conditions.) An example of a periodic localization 
would be the radiation, from the plow path, of cracks into the 
surrounding soil at regular intervals along the path. 

The objective of this study was to demonstrate the feasibility of the one-step, 
steady-state analysis procedure for the plow problem. In order to carry out the 
investigation within the time and financial constraints of the project, 
additional restrictions were introduced in order to simplify the analysis. 
However, it should be emphasized that these restrictions are not required for 
a steady-state analysis to apply. It is hoped that even within the confines of 
these simplifying assumptions that all the basic features of a one-step, steady- 
state analysis can be demonstrated and that success for this restricted class of 
problems will indicate the likelihood of success if the method were to be 
applied to the actual plow problem. 

The additional simplifying assumptions are: 



1) The geometry will be modeled as 2-dimensional (plane stress or 
plane strain) rather than 3-dimensional as is the case for the actual 
plow problem. 

2) It will be assumed that the shape of the plow is such that the soil 
remains in contact with the plow along its entire surface and that no 
crack in the soil propagates and opens ahead of the plow. 

3) It is assumed that the velocity v0 is sufficiently large and the 
permeability of the soil is sufficiently small, that the soil mass can be 
assumed to be "undrained". 

4) The soil will be modeled as a linear viscoelastic material 

The two neglected phenomenon of pore water flow due to the development 
of excess pore water pressure and the elastic-plastic behavior of real soil, both 
lead to a history dependency of the solution. The assumed linear 
viscoelasticity of the soil behavior also leads to a history dependency of the 
solution. It is not intended to suggest that these two history dependencies are 
in any way equivalent (although one might try to calibrate the viscoelasticity 
model so as to crudely capture the effects of redistribution of pore water 
pressure and soil plasticity). Instead it is hoped that the demonstration of the 
ability of the steady-state analysis to capture the history dependency of the 
viscoelastic properties will demonstrate the feasibility of capturing the history 
dependency of pore pressure redistribution and soil plasticity by means of a 
steady-state analysis. 

While it is anticipated that inertia effects will only be marginally important 
for the plow speeds of interest in this study, they are included in order to 
demonstrate the ease with which they may be modeled. 

Definition of Problem 

The purpose of this steady-state analysis is to study the disturbance in a soil 
mass produced by a plow and to determine the force required to drive the 
plow. A simple two-dimensional configuration of such a process is shown in 
Figure 1. The design parameters are the shape of the plow g, the coefficient of 
friction, f, between the plow and the soil, and the velocity of the plow v0- 
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Figure 1. Two-dimensional plowing of a soil mass 

Steady-State Behavior 

The initial insertion of the plow into the soil is a transient process which is 
not addressed in this study, i.e., it is assumed that the plowing process has 
proceeded for a long enough period of time that steady-state conditions have 
been reached. The analysis looks at the process at a particular instant in time, 
t=T, when the plow has reached the point, relative to the fixed x-y coordinate 
system, shown in Figure 2 (an alternative point of view is to consider the 

!■:•.;%•: so»'"': 

Pc u ymmetry 

Figure 2. Plowing process at Time T 



coordinate system as fixed to the moving plow). Point pc denotes the point in 
the soil that is at the tip of the plow at the instant of time of interest T. Its 
location in space in the undeformed soil has been selected to be the origin of 
the x-y coordinates. The displacement the soil point in question experiences 
in going from its undeformed location to its deformed location is uc, see 
Figure 3. 
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Figure 3. Deformed and undeformed grids at Time T 

In Figure 3 is shown a simple rectangular grid attached to the soil. Two views 
are shown, one before the soil is disturbed by the plow (undeformed grid) and 
the second of the deformed soil at the instant of time of interest, T. Consider 
the generic node point P fixed to the soil.    With time, as the plow moves 
through the soil, the locations of points P9, P8, P7, (Pi being the last node 
point in the sequence at the right extreme of the grid) will successively bear 
the same relationship to the location of the plow as P does currently. Thus, if 
one wishes to know the past history experienced by the soil at P one merely 
needs to look at the present states of points Pn- A similar statement may be 
made for the sequence Q, Q9, Q8, etc. 

Specifically the state of the soil at point P (located at x,y) at a past time T-At is 
identical to the current state of the soil at a point located at x+v0At,y. Thus, 

for example the strain {£} of the soil at location x,y and at time T-At is equal to 



the strain  at point x+v0At,y at time T (where {8}   contains  the  strain 
components, £ij, written in vector form) , i.e., 

{e(x,y,T-At)} = {e(x+v0At/y/T)} (1) 

Thus, partial derivatives with respect to time are equal to the partial 
derivatives with respect to x, e.g., 

9u du 
dt = "v° äx" (2) 

Governing Equations 

The study will be limited to small rotation and small deformation conditions. 
The equations of motion are: 

dtxx      3xXy _     d2ux 

9x   +   ay   " p at2 

(3) 
d%xy 3tyy 3^Uy 
dx    +   By    =P  at2 

Using the results of eq (2) permits the accelerations to be replaced by space 
derivatives, yielding: 

cfrxx     Bixy 03
2ux 

isr + V"pVo "äx^=0 

(4) 

d*XV ^W 9^HV        n 

The deformation is described by the strain terms: 

£xx~ ax 

auy 
eyy= ay (5) 

aux    auy x*y = "ay + ax 



For an inelastic material, the state of stress at a particular point x,y, and at the 
current time T, is a function of the history of deformation at the point in 
question, i.e., 

(a(x,y,T)} ={o-({e(x,y,t=-oo _> T)})} (6) 

Where {a} is the stress written in vector form. The actual form of this 
dependency depends upon the form of the material model used for the soil. 
In this study a linear viscoelastic law is used (e.g., see [3]). 

Using eq (1) the time dependence in eq (6) can be expressed as a space 
dependence 

{o(x,y,T)} ={a({e(x'=x -> ~, y,T)})} (7) 

The actual range of x' must only be carried far enough that undisturbed (by 
the action of the plow) soil is reached. 

Cutting Condition 

The soil is sliced to form two new surfaces at the tip of the plow. Thus, in the 
soil right at the tip of the plow some critical state for new surface formation 
must exist, this will be referred to as the "cutting criterion" and must be 
specified in the finite element analysis of the plowing process. There is a 
problem, however, in that very little appears to be known about this criterion: 
Considerable work has been done concerning the nature of the failure state at 
the tip of an advancing free surface crack in materials such as metals, 
however, very little appears to be known for the corresponding state in soil 
where the advancing crack tip is being forced by a cutting tool. In the absence 
of any concrete information, two possible criteria will be considered. The first 
is that the normal effective stress across the tip of the advancing cut is zero. 
As an alternative, the second criterion is that the soil must be in a state of 
failure, as defined by the critical state line, at the tip of the advancing cut. The 
equation forms of these two criteria will be discussed later. 

Finite Element Analysis 

The analysis will typically be nonlinear due to a) the nonlinear nature of the 
constitutive equations that are used to model soil behavior (for the purpose 
of this study a linear law is used, however, in general soil behavior is 
nonlinear), b) the cutting criterion for the soil at the tip of the plow, and c) the 
frictional behavior occurring at the soil-plow interface. A modified Newton- 
Raphson solution scheme will be used to handle the nonlinearities.    It is 



called a "modified" scheme because approximations are introduced into the 
Jacobian. These approximations have no effect on accuracy (as long as 
convergence is achieved) but do slow down the rate of convergence. The 
desirability of introducing these approximations is explained as the analysis is 
developed. 

The iterative estimate for the vector of node point degrees of freedom 
(displacements in the conventional displacement approach adopted here for 
the undrained problem) at iteration I is written as {u}(1). The Newton- 
Raphson correction to the 1-1 estimate that gives the Ith estimate is (the initial 
estimate {u}(°> is taken to be zero). 

{u]ö) = {u}«-l)-[j](I-1)"1{R](M> (8) 

Where {R)^"1) is the residual vector for the finite element equations as given 
by the (1-1) solution. The approximate Jacobian is denoted by the matrix [J]. 
The elements of the Jacobian are the first derivatives of the residuals with 
respect to the node point displacements; they are evaluated using the (1-1) 
estimate for the solution. 

Whether or not convergence will occur and if so the speed of convergence 
depends in part upon the accuracy of the approximate Jacobian [J]. However, 
if convergence does occur, obtaining the correct solution (leaving aside any 
questions of non-uniqueness) only depends upon using the correct expression 
for the residual vector. 

The finite element equations are obtained using Galerkin's weighted residual 
method applied to the negatives of the equations of motion, eq(4) (the 
negative sign is used to preserve the sign convention used in a minimum 
potential energy formulation).   The two weighted residuals associated with 
node n are (the same base functions ^>n(x,y) are used to approximate both 
displacement components ux and Uy; the base function On, for node n, is 
made up of all the element shape functions connected to node point n; the 
subscripts 2n-l and 2n give the locations of the two rows in the global residual 
vector): 

R2n-l=JJ-L-~8x- + V "PV°    J***"**** 
(9) 

8 



In the above equations, the terms containing derivatives of the stresses are 
integrated by parts. This integration by parts produces element interface 
terms to cancel the residuals in the interface stress equilibrium condition 
(continuity of the traction vector across element boundaries) which are 
implicitly present in the above residual expressions, the results are: 

R2n.l=JJ-L'Cxx "ä7 +^xy "ay" +PV0
2 -^2-OnJdxdy 

(10) 

R2n= JJ-L^xy 17 + *yy ~fy   + P vG
2 "a^n] dxdy 

In a conventional finite element analysis, the integrations in the above 
expressions are carried out element by element and give rise to the element 
contributions to the global residual vector (these element contributions are 
often called the element load vectors). Approximate (reduced) integration is 
introduced into this process. For a four node, bi-linear, isoparametric 
element the stress terms are integrated using one point integration at the 
element center (i.e., at the origin of the isoparametric coordinates for the 
element). This one point integration is used to avoid element "lock-up" due 
to the nearly incompressible behavior of undrained soil problems. Because 
this reduced integration may introduce hour-glassing into the solution, hour- 
glass control will be used (e.g., see [4]). The inertia effects are integrated using 
quadrature points only at the nodes; this process leads to a lumped mass 
idealization which has proven advantageous in many problems in dynamics. 

This partitioning of the integration into two parts, leads to the assembly of the 
finite element equations by separately considering element contributions and 
node contributions. The contribution of an element will be contained in the 
element matrices (the element residual and Jacobian matrices, alternatively 
denoted as the element load and stiffness matrices). 

From the stress terms of the above equations the components of the element 
residual vector, Re, are found (where the index j runs from 1 to 4, c denotes 
the element center, Nj are the bi-linear shape functions for the isoparametric 
element, A is the area of the element, and "}c" denotes evaluation at the 
element center): 

^21-1" A *■Xxx dx + x*y dy 'c 
(11) 

^2]= AW"ä7 + ^yy-äy^c 



It is convenient to express the above equations in matrix form. Denote the 
derivatives of the shape function Nj with respect to x and y as Fi and Gi 
respectively. The vector of element residuals (<Re> = <Rei, Re2, Re3, ..., 
Re8>) can then be written as: 

{Re} = A [B]CT{G}C (12) 

Where {G} is the stress components Tjj written in vector form and the matrix 
[B] is: 

[B] = 

0 F2 0        F3 
0       F4      0 

0 6, 0 G2     0 G3     °         64 

Gl F| G2 F2      53 F3      G4      F4 

(13) 

The strain vector {£} (<£> = <£xx, £yy, Yxy>) can be expressed in terms of the [B] 
matrix and the vector of node point displacements (<U> = <uX|, Uyl7 uX2/ 

 uy4>>: 

{£} = [B] {U} (14) 

For infinitesimal strains, the increment in strain resulting from a 
displacement increment is given by an equation similar to eq (14). 

The element Jacobian (stiffness matrix for a linear problem) is found by 
differentiating the residual vector, eq (12), with respect to the node point 
displacements. Before this can be done the stresses must be explicitly 
expressed as a function of the strains. This process, for a steady-state problem, 
presents some difficulty. The problem is that the history dependence on the 
strain, for a steady state problem, has been converted to a space dependence, 
see eq(7).   The result is that the stress at a point such as Q in Figure 3 is a 
function of the strains at points Ch, Q2, Q3 Q.      Because of this 
dependency, the residual for element Q is a function of not only the 
displacements of the nodes connected to Q, but also of all the displacements of 
the nodes connected to the elements Qi to the right of Q.   If the nodes are 

10 



numbered in the usual manner for a conventional finite element analysis so 
as to minimize the bandwidth of the equations, this dependency may result 
in the exact Jacobian not being banded. In order to avoid this possibility, an 
approximate Jacobian is used. (Further study may yield a more effective way 
of handling this problem.) The approximate Jacobian is developed by writing 
an approximation to eq (7) in the form: 

(o-(Q)} - {a(Q)}«-1) + [DCQ)]«-!) {A£(Q)} (15) 

In the above equation the stress at the center of a given element (such as 
point Q in Figure 3) is approximated in terms of the value predicted using the 
strains from the previous iteration (1-1), for points Qi, Q2, Q3 Q, plus a 
change induced by a change (during iteration I) in strain at point Q. The 
incremental change in stress resulting from the incremental change in strain 
at point Q is predicted using the tangent stiffness matrix [D]^1* (i.e., {Ao} = [D] 
{A8}). The tangent stiffness matrix is given by the algorithm that evaluates 
the material model used to represent the inelastic behavior of the soil (note 
that for general inelasticity the matrix [D] will not be symmetric). The 
expression in eq (15) is an approximation as it neglects the change in stress at 
point Q induced by the changes in the strains at points Qi, Q2, Qs   As 
noted previously as long as convergence is achieved the use of an 
approximation Jacobian will have no affect on the accuracy of the converged 
solution. The net effect of this step is to approximate the space dependence in 
eq (7) by "successive substitution" and not by a true Newton-Raphson 
procedure (for some of the other nonlinear aspects of the problem the correct 
contributions to the Jacobian are used, so the overall analysis will be a 
mixture of successive substitution and true Newton-Raphson). 

Introducing eqs (14) and (15) into eq (12) and differentiating with respect to the 
node point displacements leads to the usual tangent stiffness matrix 
(approximation to the true Jacobian): 

[Je]=A[B]cT[D]c[B]c (16) 

The above discussion concerning the use of the sequence of points Qi, Q2, 
Q3 Q to evaluate history dependency, suggests that the use of a mesh 
where the grid lines in the x direction are straight and parallel to the x axis is 
advantageous (see Figure 4 for an example of a very course grid). With this 
property the points Qi can all be located at element centers (if such a mesh is 
not used an interpolation scheme must be used to find the strains at points 
Ql, Q2/ Q3- / which all lie at the same distance y from the axis of symmetry as 
does point Q, in terms of the strains at the centers of the surrounding 
elements). For simplicity the remainder of the analysis is restricted to 
meshes of the type shown in Figure 4. 

11 



a) portion of ;deformed grid 

-type c- 

a. 

typef 

a) undeformed grid 

Figure 4. Deformed and undeformed grids for 2-D plow problem 

Considering element "n" of Figure 4, denote the x,y coordinates of the 
connecting nodes as Xj,yi (with node ni selected to be the upper right one) ; 
the isoparametric coordinates are ^=(1,-1,-1,1) and Tii=(l,l, -1,-1). The well 
known isoparametric transformation can be easily specialized for the special 
element type of Figure 4 and shown to yield: 

Nic=l/4 

Fic=£i/ot2 (17) 

Gic=(rii-^iai/a2)/2Ay 

Where (the element area is A): 

12 



OCl = XJ+X2-X3-X4 

a2 = X2-x2-X3+x4 

OC3 = x1-x2+x3-x4 (18) 

Ay=yi-y4 

A = Ay a2 /2 

For later use the values of Fi, Gi and Ni at the corner k of the element are 

needed (8ik is the Kronecker delta, i.e., the identity matrix): 

Nik = 5ik 

Fik =4i 0 + -HiTlk)/(cc2 + Tlk <X3) <19) 

Gik =[Tli (1 + $£k) " ^i (1 + Timk) («1 + *lk «3 )/(«2 + Tlk «3 )]/2 Ay 

The element Jacobian and residual matrices (eqs 12 and 16) are assembled in 
the usual way using the "direct stiffness" concept; to this must be added the 
contributions from the integration of the inertia terms in eq (10) using 
quadrature points placed at the nodes. 

Consider the node "m" in Figure 4 surrounded by the area Am with nodes "a" 
and "b" directly to the left and to the right. A central finite difference operator 
is used to approximate the second derivatives with respect to x at point m: 

a2ux -^2" = d uXa +c0 uXm +c1 uXb 

(20) 

-^  =C.1Uya+C0Uym+C1Uyb 

where 
2 

C.i = 1      (Xm-Xa) (xb"xa) 

-2 
c„ = ° (Xm-Xa) (xb-xm) 

(21) 

Cl (xb-Xm) (xb-xa) 
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The residual contributions of the last terms in eq (10) at node m, can now be 
evaluated (ux and uv are the 1-1 estimates): 

Rnode2m-l = Cö (c.j uXa +C0 uXm +q uXb) 

(22) 
RBOde2m = co (C.j uya +c0 Uym +c1 uyb) 

where 

co = Am p v0
2 

The contributions to the Jacobian (Jnodeij denotes the contribution to the i,j 
term in the matrix [J]) are found by differentiating the residual contributions 
with respect to the displacement components: 

Jnode2m-l, 2a-l  = Co C.j 

Jnode2m-l, 2m-l  = CO CQ 

Jnode2m-l, Zb-1 = CO q (23) 

Jnode2m, 2a = CO C.j 

Jnode2m,2m = CO CQ 

Jnode2m, 2b = CO q 

Special consideration is required when "m" is a node on either the left or 
right boundary of the mesh (i.e., either no node point "a" to the left or "b" to 
the right exist). It is required that the horizontal dimensions of the soil mass 
being analyzed be selected large enough that at the very left the soil has come 
to rest and, thus, there is no acceleration while at the right the soil has as yet 
not felt the presence of the advancing plow and, thus, no acceleration exists. 
Hence, the node contributions to the residual and Jacobian matrices are zero 
at these points. 

After the contributions of all elements and node points to the global Jacobian 
and residual matrices have been assembled, the resulting matrices must be 
modified to account for boundary conditions before the solution of eq (8) is 
undertaken. In Figure 4 the several different boundary types are identified by 
the letters "a" through "f". Type "a" is the line of symmetry where Uy=0 (the 
specification of displacement boundary conditions is done in the usual way 
for finite element analyses).    Boundary "b" is required to be far enough 
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removed that the soil has not yet felt the disturbance of the advancing plow, 
hence, ux=0 and uy=0. For the plowing of a large soil mass, boundary "c" is 
required to be far enough removed that the soil does not detect the passing 
plow, thus, ux=0 and uy=0. Boundary "d" is required to be far enough to the 
left that the soil has reached steady state behavior, thus 

du X 

at 

3u y. 
at 

Using eq (2) this gives 

aux 

= 0 
(24) 

= 0 

ax 

au x 
ax 

= o 
(25) 

= 0 

The derivative boundary conditions, for a point such as "j" on boundary d, 
are specified using two point finite difference operators: 

u*k-ux, 
Xk-Xj 

1 (26) 
UYk-UUj _ 

Xk-Xj 

or 
uxi-uxk = 0 

(27) 
Uyj-Uyk= 0 

Because the soil model, the interface condition along the plow's surface and 
the cutting condition specification for the point at the tip of the plow, in 
general, all destroy the symmetry of the Jacobian matrix no attempt is made to 
preserve symmetry in the implementation of eq (27). The implementation 
of eq (27) is easily accomplished by replacing the finite element equilibrium 
equation 2j-l by the equation that uXj-uXk=0. Similarly equation 2j is replaced 
by the equation uy,-uyk=0. The residuals just become the differences between 
the two displacements as estimated in the previous iteration; the Jacobian, the 
derivative of the residual, has entries of zeros and ones in the appropriate 
columns, i.e., 
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R2H=ux/M)-uXk(H) 
(28) 

K2ruy/
M>-uyk<I-« 

and (all other elements are zero) 

h]-h2)-l = 1 

J2J-1,2k-l = -1 

(29) 

h],2] = 1 

h),2k = _1 

Along the boundary "e" it is assumed that the trench produced by the plow 
remains open and, thus, the surface traction acting on the soil is just the 
water pressure if the plowing is below the surface of water and zero if it is in 
air; the resulting node point forces are added to the appropriate rows of the 
residual in the usual fashion. 

Boundary segment f is the interface (excluding node pc) between the soil and 
the plow. Denote the equation of the surface of the plow by y=g(x*) where x* 
is measured from the plow tip, i.e, x*=x-uc, (recall that at the time of interest 
T, the location of the coordinate axis is specified so that the tip of the plow is 
at x=uc, see Figures 2 , 3, 4 and 5). Along the soil-plow interface the frictional 
relationship between the effective, normal and tangential interface stresses 
must be enforced. This condition is approximated in terms of the 
"generalized forces" at the several nodes lying along the interface, such as 
node "i" in Figure 5. Both the virtual work and the minimum potential 
energy interpretation of the finite element equations can be used to give the 
interpretation of the negatives of the node point residuals (-R      and -R ) as 

external reactions applied at the node (these of course should be zero at 
interior and stress free boundary nodes). Thus in Figure 5: 

FX> =  -R2i-leff 
(30) 

FVi = -R-. 
n       2ieff 
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Figure 5. Components of generalized force at node i, 
due to action of soil on plow 

The "eff" subscript indicates that the residuals must be those calculated using 
effective soil stresses (as opposed to using total stress as is the case for all other 
nodes where equilibrium equations are being generated). This mixed use of 
total and effective stress based residuals is accomplished by replacing those 
rows in the element residual and Jacobian matrices, which correspond to 
nodes along the interface, by rows calculated using the effective stresses (i.e., 
in eq 12 effective stresses are used and in eq 16 the effective tangent stiffness 
matrix is used, that is it is not augmented by the effective bulk modulus Keff). 
Equation 30 is now used to find the normal (n) and tangential components (t) 
of generalized force: 

Fni =  -R2i-leff «*<*?  ' R2ieff ^«V 

F'i = Ra-leff Sin(ei) " ^ieff C°S(ei} 

(31) 

Assuming that the interaction of the plow and the soil can be described by 
Coulomb friction with a coefficient of friction of "f" (the direction of Fti must 
be as shown in Figure 5 in order to oppose the motion of the plow): 

Fti-fFni=0 

Introducing eq (31) into eq (32) gives: 

(32) 

R„. ,     [sin(6.) + f cosCe.)] - R,. „ [cos(9.) - f sin(6.)] = 0 (33) 
2i-leff i i -^eff 1 J 
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This equation replaces the (2i-l)tn finite element equation.  The new residual 
is the left hand side of eq (33) (where R,. .     and R0.    are the old rows in the 

zi-leff zierf 
residual vector calculated using the effective soil stresses not the total) 
evaluated using the (1-1) estimate of the solution.  Differentiating eq (33) with 
respect to the displacement components (and neglecting the dependence of 0. 

on Uc) gives the new row in the global Jacobian matrix as a combination of 
the old rows where the R's of eq (33) are replaced by J's. The sin and cos of 
the angle 6. are calculated from geometry: 

sin(G.) = -  g  
Vl+(g')2 

(34) 

cos(0.) 
i 

Vl^gÖ2 

Where g' is the derivative of g with respect to x*. The values of g and g' are 
evaluated at the deformed location of node "i", i.e., at (X*=XJ + uXi- uc), where 
the values of uXj and uc are estimated using the results of the previous 

iteration.   Because this dependency of 9. on the solution is ignored when 
forming the new row for the Jacobian it is an approximation to the true 
Jacobian (as noted previously such an approximation has no affect on the 
accuracy of the converged solution). 

In addition to the frictional law, along the soil-plow interface, the conformity 
of the soil to the plow profile must be enforced (it is assumed that no 
separation occurs). Consider node "i" on the plow-soil interface, the 
compatibility condition between the plow and soil requires that: 

Uyj - g(Xi+UxfUC) = 0 (35) 

This equation replaces the (2 i)*h finite element equation. The residual is the 
left hand side of eq (35) (where the estimates from iteration 1-1 are used for 
UXJ and uc). The new row for the Jacobian is found by differentiating the 
residual with respect to the displacement components (again the dependence 
on uc is ignored in this process): 

^2i,2i-l = " & 
(36) 

'2I,2I 
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The above process assures that the deformed shape of the soil has the precise 
contour of the plow (assuming that the plow can be modeled as rigid). The 
precise fitting of the deformed soil to the plow profile may be judged to be a 
large deformation effect which could possibly be approximated by neglecting 
the difference between x and x*. However, because the precise specification is 
quite a simple matter it is included in the analysis. 

At node pc uv=0. In addition, the "cutting criterion" for the soil must be 
specified. The determination of what the cutting state should be is a problem 
in fracture mechanics which to the Author's knowledge has not been 
addressed for soils. In this work two simple assumptions for the cutting state 
are discussed. 

The first is that the soil being cut has reached a limiting value of effective 
tensile stress, Gfaii, across the surface being cut. This assumption is 
implemented by requiring that the effective normal (to the cut) stress Tyyeff 

should be equal to Ofaii at point pc. This specification replaces the finite 
element equilibrium equation for the x direction at node pc (the equilibrium 
equation contains the generalized force exerted on the soil by the tip of the 
plow, this force is not known a priori): 

tyyeffpc -<Jfail = 0 (37) 

The quantity Tyyeffp is the effective normal stress at point pc as predicted 
using the finite element approximation in element c. The prediction of the 
state of stress at point pc in element c requires that the history dependency be 
evaluated using the strain states for all the corresponding points in the row of 
elements to the right of c. This process was previously discussed for the 
prediction of the states of stress at the element centers. 

The (2pc-D residual is the left-hand side of eq (37) as predicted using the 
solution from the (1-1) iteration. The corresponding row in the Jacobian is 
found by differentiating the residual with respect to the displacement 
components (use is made of eq 15): 

J2Pc.i,j s Dl*eff Bn,j (38) 

Where Dijeff are the tangent stiffness properties for the effective stress at the 
location of the third node (i.e., pc) of element c. The components of the B 
matrix (eq 13) are found using eq (19) with k=3; the repeated index n is 
summed from 1 to 3, and the subscript j in the Jacobian refers to the eight 
degrees of freedom for element c (i.e., 2mi-l and 2mi, where mj are the four 
nodes for element c). 
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The second possibility for a cutting criterion at node pc was suggested by 
Professor Kutter. It assumes that the soil is in a state of failure at point pc as 
described by critical state soil mechanics. This condition assumes that cutting 
occurs when the effective stress state for the soil lies on the critical state line 
in I, J space (I is three times the mean effective stress and J is the second stress 
invariant for the deviatoric stress), i.e., 

J/I-M/V27 = 0 (39) 

Where M is the slope of the critical state line in p, q space. The 
implementation of this cutting condition replaces the 2pc-l residual with the 
left-hand side of eq (39) evaluated at the third node of element c. The new 
row in the Jacobian is found by differentiating the residual (see the discussion 
of eq 39 for the meaning of J, etc.): 

V3 
J2Pc-l,j = [ 2f (ßln " Tß2n + 2*xx D3n) + M ß2n] Bnj (40) 

where 
2 

ßln = 
i=l 

Dineff 

ß2n = 
1    2 

3-X 
i=l 

Dineff 

(41) 

With the boundary condition modifications of the finite element equations 
completed, the equations are ready for solution to give the Newton-Raphson 
correction to the node point displacements for iteration I, see eq (8). As noted 
previously the simultaneous equations are banded but non-symmetric 
Iteration must be continued until convergence is achieved. Convergence is 
determined by the convergence of the plow force (described below). 

It is of primary interest to determine the force required to propel the plow 
through the soil. This force is calculated as 2 times (to account for the fact that 
symmetry is used in the modeling of the plow) the sum of all the x 
components of the total generalized forces acting at the interface nodes along 
the soil-plow interface (including point pc) minus any force due to water 
pressure acting on the back of the plow. 

Example 
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The theory presented in the previous section has been implemented in a 
simple, non-production, finite element code intended for preliminary 
evaluation of the one-step, steady-state analysis concept. The analysis was 
implemented for both plane stress and plane strain conditions for a two- 
dimensional idealization of the plow problem. No attempt was made to 
accurately model the soil's inelasticity nor the pore-water pressure 
redistribution. Instead a linear viscoelastic model was used to model the soil, 
pore-water system (this choice was made in order to simplify and, thus, 
expedite this preliminary implementation). A linear viscoelastic model can 
qualitatively model the phenomena of soil inelasticity and pore-water 
pressure redistribution but can not do so quantitatively. Because it can 
qualitatively model these phenomena it is felt that its inclusion in the trial 
implementation will demonstrate whether or not the one-step, steady-state, 
inelastic analysis method is capable of handling these phenomena. 

Because of the gross idealizations of two-dimensional geometry and linear 
viscoelastic behavior of the soil, pore-water system, no quantitative 
significance should be given to the results that are presented below. The 
example, however, will demonstrate the ability of the analysis method to 
handle either steady-state dynamic or quasi-static conditions; time-dependent, 
inelastic material behavior; interface friction between plow and soil; 
prescription of a failure condition for the soil at the tip of the plow; and the 
ability to accurately model arbitrarily shaped plows. 

Two possible "cutting conditions" were suggested in the previous section. 
For the purpose of this example the imposed cutting condition was that the 
normal stress in the soil just ahead of the plow tip is zero (assumed zero 
tensile strength of the soil). While this condition may be a gross 
simplification of the actual situation, it is thought that comparisons of 
competing plow designs would still be meaningful and that quantitative 
predictions of plow force would still be relatively accurate (if the restrictions 
of two-dimensional geometry and idealized linear viscoelastic soil behavior 
were removed). 

As an illustration of the potential capabilities of the one-step, steady-state 
analysis concept, the following problem was analyzed. A plane stress analysis 
was performed of a plow moving at constant velocity v0 through a layer of 
soil, see Figure 6. For the purpose of simplicity of data generation, the shape 
of the plow was taken to be a simple analytical curve of ybiade = t/2 [l-e-a(-x*>] 
where -L < x* < 0 (the coordinate x* is measured from the tip of the plow, see 
discussion in the previous section). The length of the blade is denoted by L, 
the blade thickness is t and a is a parameter that controls blade shape. As was 
stated it was for the sake of convenience that a simple equation was assumed 
for the shape of the blade; it is in fact a very simple matter to accommodate 
arbitrarily shaped plows. 
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The assumed linear viscoelastic properties of the soil, pore-water system are 
described by two relaxation functions, one in shear and the other in volume 
change, i.e., 

Oc(t) = Goo + (G0 - Goo) e-«G* 

0B(t) = Boo + (B0 - Boo) e-aB* 

The initial shear and bulk moduli are subscripted by "o", while the values at 
infinite time are subscripted by °°. The rates of relaxation are controlled by CCG 

and aß- 

Using symmetry, the analysis can be restricted to half of the soil mass, see the 
lower part of Figure 6. The boundary condition at the outer edge of the soil 
mass (the tank wall for the Navy test, see [5,6]) was taken to be a fixed 
boundary. 

Several analyses were run in order to determine the placement of the right 
boundary so that it was sufficiently far upstream of the plow not to feel any 
effect of the advancing plow. The boundary condition at this edge was taken 
to be fixed. Several analyses were run in order to determine the placement of 
the left boundary so that it was sufficiently far downstream of the plow to 
have reached a uniform state. The condition of uniformity was specified by 
setting the derivatives of the displacement components with respect to x to be 
zero at each of the node points along the left side boundary. 

The boundary condition behind the plow and along the center-line of the soil 
is one of a stress free surface. The boundary condition ahead of the plow is 
the condition of symmetry. At the interface of the plow and the soil (except at 
the plow tip) the conditions are that the soil conforms to the shape of the 
plow and the generalized nodal shear forces equal the coefficient of friction f 
times the generalized nodal normal forces. 
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a) Problem Configuration 

b) Configuration for Analysis 

Figure 6. Simple plow problem 

Finally at the very tip of the plow, the displacement uy is required to be zero 
and the cutting condition is specified. 

The total force F0, required to move the plow at constant velocity through the 
soil, is calculated by summing the x components of the node point 
generalized forces for the nodes along the plow-soil interface (including the 
tip of the plow). 

The coupling introduced into the simultaneous equations (for the steady- 
state, history dependent, finite element analysis) by the interchange of time 
and space when evaluating the history dependence of the soil properties was 
handled by moving the coupling terms to the right-hand side of the equations 
and approximating them by iteration. (Thus, the banded nature of the finite 
element equations was preserved.) Iteration was of course already necessary 
to model the nonlinearities of the problem (material inelasticity, the 
frictional interface condition and the enforcement of the cutting condition at 
the tip of the plow). As was previously noted, the equations are non- 
symmetric (this is also usually true for a time marching analysis if the correct 
Jacobian is used for the inelastic material). 
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Most of the parameters describing the example problem were selected with 
the Navy's laboratory test [5,6] in mind, however, because the assumed 
viscoelastic behavior for the soil can at best qualitatively represent the 
inelasticity of the soil and the movement of pore water, no effort was made to 
correlate this aspect of the problem description to the actual test conditions. 
The selected parameters were: viscoelastic soil properties of Goo=50 psi, Go=500 
psi, OG=30 sec"1 and Boo=Bo=335,000 psi; soil density of .081 lb/in3; blade shape 
and dimensions of L=6.5 in, t=3/8 in and oc=0.7; the dimensions of the soil 
mass were 45 inches to the left of the plow, 45 inches to the right of the plow 
and 15 inches for the half width: 

A basic 4 element grid was selected and successively refined (maximum of 
approximately 2500 elements) until the predicted value of F0 converged 
(results from the 1300 element and 2500 element grids were nearly identical). 
From 5 to 10 iterations were required for convergence of the one-step, steady- 
state analysis. Plow velocities of 1, 3, 5 and 7 fps were considered; results for 5 
fps are given in Figures 7-10. 

Figure 7 shows the deformed mesh (displacements and plow thickness 
magnified by a factor of 5); all elements were rectangles in the undeformed 
mesh. Contour plots of the soil strains Yxy arid £x are given in Figures 8 and 9, 
a contour plot of the soil stress TXy is given in Figure 10. These plots clearly 
show that the length dimension has been taken large enough so as to reach 
undisturbed soil on the right and uniformity conditions on the left. Given in 
Figure 11 are plots of the plow force (per unit thickness of the plane stress 
body) as a function of plow velocity. The circles are for the plow 
configuration of a=0.7 and the case where acceleration of the soil is included; 
when the inertia is neglected the curve with square symbols was obtained. 
The curve with diamond symbols is for the case of a differently shaped plow 
(oc=1.2); the two plow shapes are illustrated in Figure 12 (the vertical scale is 
exaggerated by about a factor of 7; the waviness of the lines are due to the 
plotting program). 
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mesh limits: 

xmin -5.1500E+01 

xmax 4.5000E+01 

ymin O.OOOOE+00 

ymax 1.5000E+01 

status data: 

nodes used 1440 

elements   1357 

Figure 7: Deformed mesh for example plow problem, v0=5 fps 
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strain gamma-xy 

min 

max 

-1.838E-01 
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-1. 00 
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OOE-01 
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Figure 8: Contour plot of shear strain (yxy) in soil, v0=5 fps 
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strain    epBÜon-x 

min 

max 

-1.189E-01 

2.997E-02 

+3.3000E-02 
+2.7000E-02 
+2.1000E-02 
+1.5000E-02 
+9.OOOOE-03 
+3.0000E-03 
-3 .OOOOE-03 
-9.OOOOE-03 
-1.5000E-02 
-2. i000E-02 
-2.7000E-02 
-3.3000E-02 
-3.9000E-02 
-4.5000E-02 
-5.1000E-02 
-5 .7000E-02 
-6.3000E-02 

•9000E-02 
.5000E-02 

-8.1000E-02 
-8.7000E-02 
-9 .3000E-02 
-9.9000E-02 
-1.0500E-01 
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-1.1700E-01 
-1.2300E-01 

-6. 
-7. 

Figure 9: Contour plot of normal strain (6x) in soil, v0=5 fps 
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etrees tau-xy 

min 

max 

•8.403E+01 

3.036E+00 

Ätagss.-tt»|;i;K 
■Ü^^S^Ti! 

US ■:'",: ".'""'""/ 

£?P3K£& 

Wifi 
SSfiSSEpjS 

-2 
-6 
-1 
-1 
-1 
-2.2 
-2 .6 
-3. 
-3 , 
-3. 
-4. 
-4 . 
-5. 
-5. 

-6, 
-7 , 
-7 , 
-7 . 

-5.8 
-6.2 

-8.2 
-8.6 
-9 .0 

OOOE+01 
OOOE+01 
OOOE+00 
OOOE+00 
OOOE+00 
OOOE+00 
OOOE+01 
OOOE+01 
OOOE+01 
OOOE+01 
OOOE+01 
OOOE+01 
OOOE+01 
OOOE+01 
OOOE+01 
OOOE+01 
000E+01 
OOOE+01 
OOOE+01 
OOOE+01 
OOOE+01 
000E+01 
OOOE+01 
OOOE+01 
OOOE+01 
OOOE+01 
000E+01 

Figure 10: Contour plot of shear stress (TXy) in soil, v0=5 fps 
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Figure 11: Dependence of plow force on plow velocity 
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Figure 12. Shapes of plow for example problem 

It is to be emphasized that no attempt was made to calibrate the viscoelastic 
material model in order to capture the actual soil inelasticity and pore-water 
pressure redistribution nor to pick its parameters so that FG would agree with 
experimental observations (it appears that this would be possible but it would 
have very little significance). 

What is important to observe from these results is the predicted dependence 
of the plow force FG on the velocity, v0, the rather dramatic dependence of the 
force upon the plow shape and the importance of including inertia effects. 
However, of even greater significance is the observation of the inexpensive 
nature of the analysis. As was mentioned only 5 to 10 iterations were 
required for convergence. Of course, because it is a steady-state analysis, no 
time stepping is required. 

Conclusions 

From this preliminary study several conclusions can be drawn. Because of 
the very few iterations (and no time stepping) required, it should be entirely 
feasible to perform a three-dimensional, steady-state, inelasticity study of the 
plow problem including parameter studies for different plow shapes and 
plowing velocities. Thus, it appears that the one-step, steady-state analysis 
procedure offers a viable alternative to a multi-step, transient analysis of the 
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plow problem. However, because no three-dimensional code currently exists 
for the one-step, steady-state procedure, it would seem that the best way to 
proceed for the present study is to use an available commercial code to 
perform a multi-step, transient analysis. 

Before any attempt is made to produce a production code for the one-step, 
steady-state procedure several items require further investigation. The 
failure (or cutting) condition in the soil at the tip of the plow (i.e. the state of 
the soil as it is cut by the plow tip to form a new surface) is not well 
understood and is an area that should receive further theoretical and 
experimental study (this same information is also required for a rigorous 
multi-step, transient analysis of the plow problem). The affect of using a 
realistic plasticity model for the soil on the rate of convergence of the 
iteration process must be studied. Finally, means for the incorporation of the 
flow of pore-water into the analysis must be developed. 
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